Part 6: Solution Patterns (Classical & Applied AI)

Chapter 34: Computer Vision

Hire Us
6Part 6: Solution Patterns (Classical & Applied AI)

34. Computer Vision

Chapter 34 — Computer Vision

Overview

Vision systems for detection, OCR, visual QA, and edge deployment. This chapter covers production computer vision architectures—from task selection and model deployment to edge optimization and continuous monitoring. We focus on practical patterns that balance accuracy, latency, cost, and privacy requirements.

Computer Vision Architecture Patterns

End-to-End CV Pipeline

graph TB A[Image Input] --> B[Preprocessing] B --> C{Deployment Target} C -->|Cloud| D[High-Accuracy Models] C -->|Edge| E[Optimized Models] D --> F[Batch Processing] E --> G[Real-time Inference] F --> H[Results Storage] G --> H H --> I[Post-processing] I --> J[Business Logic] J --> K[Monitoring & Feedback] K --> L[Model Retraining] L --> B style D fill:#e1f5fe style E fill:#f3e5f5 style K fill:#fff3e0

Task Selection Framework

graph TD A[CV Problem] --> B{Input Type?} B -->|Single Object| C[Classification] B -->|Multiple Objects| D{Need Locations?} D -->|Yes| E{Need Boundaries?} E -->|Boxes| F[Object Detection] E -->|Pixels| G[Segmentation] D -->|No| H[Multi-label Classification] B -->|Text in Image| I[OCR Pipeline] B -->|Question About Image| J[Visual QA] style F fill:#c8e6c9 style G fill:#ffccbc style I fill:#b3e5fc

Core CV Tasks Comparison

TaskAccuracy TargetLatencyModel SizeUse Case
Image Classification85-95%<50ms5-50MBQuality control, content moderation
Object DetectionmAP 40-55<200ms20-100MBAutonomous vehicles, surveillance
Semantic SegmentationmIoU 60-80%<500ms50-200MBMedical imaging, satellite analysis
Instance SegmentationmAP 35-50<500ms100-300MBRobotics, counting objects
OCR90-98% CER<100ms30-100MBDocument processing, license plates
Pose EstimationPCK 85-95%<100ms20-80MBSports analytics, AR/VR

Data Strategy & Quality

Annotation Quality Framework

AspectBest PracticeCommon PitfallImpact
Label ConsistencyClear guidelines, regular auditsAmbiguous definitions10-20% accuracy drop
Inter-annotator AgreementMultiple annotators per image, consensusSingle annotatorPoor generalization
Edge CasesExplicitly annotate hard examplesOnly annotate easy casesFails on real data
Class BalanceSample to balance classesNatural distributionBiased predictions
Quality ControlReview random samples, track metricsNo validationGarbage in, garbage out

Data Augmentation Strategy

Essential Augmentations:

geometric:
  - random_crop: 0.8-1.0 scale
  - horizontal_flip: 50% probability
  - rotation: ±15 degrees

photometric:
  - brightness: ±20%
  - contrast: ±20%
  - hue/saturation: ±15%

noise:
  - gaussian_noise: 20% probability
  - blur: 20% probability

Implementation Pattern:

# Minimal augmentation pipeline
transform = A.Compose([
    A.RandomResizedCrop(640, 640, scale=(0.8, 1.0)),
    A.HorizontalFlip(p=0.5),
    A.RandomBrightnessContrast(p=0.5),
    A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
], bbox_params=A.BboxParams(format='coco', label_fields=['labels']))

Model Selection & Performance

Object Detection Models Comparison

ModelSpeed (FPS)mAPParametersLatencyBest For
YOLOv8n8037.33.2M12msEdge, mobile, real-time
YOLOv8s6044.911.2M18msBalanced performance
YOLOv8m3550.225.9M35msHigh accuracy needed
Faster R-CNN1542.041.8M80msAccuracy over speed
EfficientDet-D04534.63.9M25msEdge deployment

Image Classification Models Comparison

ModelTop-1 AccParametersInference (ms)Model SizeBest For
MobileNetV3-Small67.4%2.5M109MBMobile, edge
EfficientNet-B077.1%5.3M1520MBBalanced
ResNet5076.1%25.6M2098MBStandard baseline
ViT-Base84.5%86M45330MBHigh accuracy
ConvNeXt-Tiny82.1%28M25110MBModern architecture

Minimal Detection Implementation

from ultralytics import YOLO

# Quick object detection
model = YOLO('yolov8n.pt')
results = model.predict('image.jpg', conf=0.5)

# Parse results
for r in results:
    for box in r.boxes:
        print(f"{r.names[int(box.cls[0])]}: {box.conf[0]:.2f}")

Minimal OCR Implementation

import easyocr

# Quick OCR
reader = easyocr.Reader(['en'], gpu=True)
results = reader.readtext('document.jpg')

# Extract text
for bbox, text, conf in results:
    print(f"{text} ({conf:.2f})")

Edge vs Cloud Deployment

Deployment Decision Framework

graph TD A[CV Deployment] --> B{Latency Requirement} B -->|<100ms| C[Edge Required] B -->|>500ms| D{Privacy Sensitive?} B -->|100-500ms| E{Network Reliability?} C --> F[Edge Deployment] D -->|Yes| F D -->|No| G{Volume?} E -->|Poor| F E -->|Good| G G -->|High >1M/day| H[Cloud + CDN] G -->|Low| I[Cloud Serverless] F --> J[Optimize: TensorRT, ONNX] H --> K[Batch Processing] I --> L[On-demand Scaling] style F fill:#c8e6c9 style H fill:#b3e5fc style I fill:#f3e5f5

Edge vs Cloud Comparison

AspectEdgeCloudDecision Factor
Latency10-50ms100-500ms (+ network)Real-time apps → Edge
PrivacyData stays localData transmittedSensitive data → Edge
Cost (high volume)Lower (one-time hardware)Higher (per-inference)>1M inferences/day → Edge
ScalabilityLimited by hardwareVirtually unlimitedVariable load → Cloud
UpdatesRequires device updateInstantFrequent updates → Cloud
ComputeLimited (mobile/embedded)Powerful GPUsComplex models → Cloud
BandwidthNo network neededRequires connectivityOffline use → Edge
ReliabilityWorks offlineNetwork dependentUnreliable network → Edge

Edge Optimization Techniques

Quantization Impact:

INT8_quantization:
  speed_improvement: 3-5x
  model_size_reduction: 4x
  accuracy_drop: 0.5-2%
  best_for: Embedded devices, mobile

INT16_quantization:
  speed_improvement: 2x
  model_size_reduction: 2x
  accuracy_drop: <0.5%
  best_for: Edge servers

Optimization Stack:

# Export to ONNX
torch.onnx.export(model, dummy_input, 'model.onnx')

# Convert to TensorRT (NVIDIA)
import tensorrt as trt
# trt.Builder().build_engine('model.onnx')

# Quantize for mobile
quantized = torch.quantization.quantize_dynamic(
    model, {nn.Linear, nn.Conv2d}, dtype=torch.qint8
)

Performance Benchmarks

Detection Model Benchmarks (640x640 input)

ModelHardwareLatencyThroughputPowerCost/1M inferences
YOLOv8nJetson Nano45ms22 FPS5W$0.12
YOLOv8nRaspberry Pi 4180ms5.5 FPS3W$0.25
YOLOv8sTesla T4 (Cloud)8ms125 FPS70W$2.50
YOLOv8mA100 (Cloud)6ms166 FPS250W$8.00
Faster R-CNNA100 (Cloud)22ms45 FPS250W$12.00

OCR Performance Benchmarks

SystemLanguageAccuracy (CER)LatencyBest For
EasyOCREnglish96%150msGeneral purpose
TesseractEnglish94%80msDocuments
PaddleOCRMulti-lang95%120msAsian languages
Google Vision APIMulti-lang98%200ms (+ network)High accuracy needed

Case Study: Warehouse Damage Detection

Business Context

  • Industry: Logistics and warehousing
  • Scale: 20 warehouses, 100K packages/day
  • Problem: Manual inspection slow, inconsistent (78% accuracy)
  • Goal: Automated damage detection with <200ms latency
  • Constraints: Edge deployment (no cloud), privacy, 95%+ accuracy

Solution Architecture

graph TB A[Camera Feed 30 FPS] --> B[NVIDIA Jetson Xavier NX] B --> C[Frame Selection 1/4 frames] C --> D[Preprocessing Pipeline] D --> E[YOLOv8s-INT8 TensorRT] E --> F{Damage Detected?} F -->|Yes conf>0.8| G[Alert + Save Image] F -->|No| H[Continue Monitoring] G --> I[Daily Batch Sync] H --> I I --> J[Cloud Analytics] J --> K[Model Retraining Pipeline] K -.Weekly Updates.-> B style E fill:#c8e6c9 style G fill:#ffccbc style K fill:#b3e5fc

Implementation & Results

Technical Stack:

hardware:
  device: NVIDIA Jetson Xavier NX
  power: 23W (< 30W requirement)
  cost: $399/unit

model:
  architecture: YOLOv8-small
  optimization: TensorRT INT8
  size: 47MB (< 100MB requirement)
  classes: [intact, torn, crushed, wet_damage]

data:
  training_images: 50,000
  warehouses: 20
  augmentation: rotation, brightness, blur, occlusion

Performance Results:

MetricBaseline (Manual)RequirementAchievedImprovement
Accuracy78%>95%96.8%+24%
Latency12s (human)<200ms127ms99% faster
FPSN/A>77.9Real-time
False Positive Rate15%<2%1.4%-91%
Throughput50 pkgs/hr/worker1000 pkgs/hr/cam1,140 pkgs/hr23x
Cost per inspection$0.18<$0.05$0.008-96%

ROI Analysis:

investment:
  hardware: $7,980 (20 units)
  development: $45,000
  training: $8,000
  total: $60,980

annual_savings:
  labor_reduction: $180,000
  damage_claims_reduction: $95,000
  throughput_increase: $120,000
  total: $395,000

roi: 548%
payback_period: 2.3 months

Key Learnings

  1. Edge essential for latency + privacy: Cloud would add 100-200ms network latency; on-device processing eliminated privacy concerns
  2. Quantization ROI strong: INT8 gave 5x speedup with only 0.3% accuracy loss
  3. Domain data critical: Pre-trained models: 68% accuracy; custom trained: 96.8%
  4. Monitoring prevents drift: Weekly retraining improved accuracy from 94% → 96.8% over 6 months
  5. Confidence thresholds matter: Using conf>0.8 reduced false positives from 3.2% → 1.4%

Implementation Checklist

Phase 1: Problem Definition (Week 1)

  • Define CV task type (detection, classification, OCR)
  • Establish accuracy and latency requirements
  • Choose deployment target (edge vs cloud)
  • Document data collection strategy
  • Create annotation guidelines with examples

Phase 2: Data & Training (Week 2-4)

  • Collect 5,000+ diverse images (10K+ for complex tasks)
  • Annotate with multiple reviewers for quality
  • Split data: 70% train, 15% val, 15% test
  • Train baseline model, evaluate on validation
  • Implement augmentation, retrain, compare

Phase 3: Optimization (Week 5-6)

  • Benchmark latency on target hardware
  • Apply quantization if edge deployment
  • Export to deployment format (ONNX/TensorRT)
  • Validate accuracy post-optimization (< 2% drop acceptable)
  • Load test for throughput requirements

Phase 4: Deployment (Week 7-8)

  • Deploy in shadow mode, validate with production data
  • Set up monitoring (accuracy, latency, errors)
  • Create alerting for model drift
  • Plan weekly/monthly retraining
  • Document model card and limitations

Common Pitfalls & Solutions

PitfallSymptomSolutionPrevention
Annotation biasHigh train, low test accuracyMultiple annotators, guidelinesInter-annotator agreement >85%
Insufficient diversityPoor real-world performanceCollect varied conditions, augmentTest on holdout domains
Wrong metricsGood mAP, poor business impactOptimize business metricsDefine success criteria upfront
Class imbalanceBias toward majority classWeighted loss, balanced samplingAim for 20-80% per class
Quantization shockModel breaks after optimizationQuantization-aware trainingValidate accuracy post-quant
Deployment mismatchTest >> production accuracyMatch test to productionTest on production-like data

Key Takeaways

  1. Task selection drives architecture: Object detection needs location; classification needs labels; match model to task
  2. Data quality > model size: 10K clean, diverse images outperform 100K biased images
  3. Edge optimization critical: INT8 quantization: 4x smaller, 3-5x faster, <2% accuracy loss
  4. Deployment context matters: Edge for latency/privacy; cloud for complex models and scalability
  5. Monitor and retrain: CV models drift; plan weekly/monthly retraining from day one
  6. Benchmarks guide decisions: Test on target hardware early; latency surprises are expensive