55. API Integration & Legacy Modernization
Chapter 55 — API Integration & Legacy Modernization
Overview
Expose AI capabilities via APIs; modernize legacy systems using strangler patterns and events. Legacy systems contain critical business logic and data but often lack the flexibility for AI integration. This chapter covers strategies for safely integrating AI with legacy systems through well-designed APIs, event-driven architecture, and incremental modernization that minimizes risk while unlocking value.
Why It Matters
APIs make AI reusable and safe. Legacy modernization unlocks data and reduces fragility, but requires careful strangler patterns and event architectures. Organizations that successfully modernize legacy systems achieve:
- Faster AI feature delivery (weeks instead of months) via API-first architecture
- Reduced system fragility by decoupling AI from core legacy logic
- Incremental migration with low risk and clear rollback paths
- Data accessibility for AI models without compromising legacy system stability
- Cost savings by selectively modernizing high-value components
- Team agility through clear API contracts enabling parallel development
Failed approaches lead to unstable systems, extended downtime, blown budgets (often 3-5x over), and abandoned modernization initiatives.
API Design Patterns for AI
API Pattern Comparison
| Pattern | Latency | Scalability | Complexity | Best For |
|---|---|---|---|---|
| REST (Synchronous) | Low (ms) | High | Low | Real-time predictions, simple CRUD |
| GraphQL | Low-Medium | High | Medium | Complex data fetching, client flexibility |
| gRPC | Very Low (μs) | Very High | Medium-High | High-performance, service-to-service |
| Async/Webhooks | High (seconds) | High | Medium | Long-running tasks, notifications |
| Message Queue | Medium | Very High | High | Batch processing, decoupling |
| Streaming | Continuous | Medium | High | Real-time data feeds, embeddings |
RESTful AI API Design
# FastAPI example for AI model serving
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel, Field
from typing import Optional, Dict
from datetime import datetime
app = FastAPI(title="AI Prediction API", version="2.1.0")
# Request/Response models with validation
class PredictionRequest(BaseModel):
input_data: Dict[str, any] = Field(..., example={"age": 35, "income": 75000})
model_version: Optional[str] = "latest"
explain: bool = False
class PredictionResponse(BaseModel):
prediction_id: str
prediction: float
confidence: float
model_version: str
explanation: Optional[Dict] = None
timestamp: datetime = Field(default_factory=datetime.utcnow)
# Endpoints
@app.post("/v2/predictions", response_model=PredictionResponse)
async def predict(request: PredictionRequest, credentials = Depends(verify_token)):
"""Get real-time prediction from AI model"""
user = await verify_token(credentials)
await check_rate_limit(user.id, limit=100, window=60)
# Get prediction
try:
prediction, confidence, explanation = await model_service.predict(
input_data=request.input_data,
model_version=request.model_version,
explain=request.explain
)
return PredictionResponse(
prediction_id=generate_id(),
prediction=prediction,
confidence=confidence,
model_version=request.model_version,
explanation=explanation if request.explain else None
)
except ModelUnavailableError:
raise HTTPException(status_code=503, detail="Model unavailable")
@app.post("/v2/predictions/batch")
async def batch_predict(inputs: List[Dict], callback_url: Optional[str], credentials = Depends(verify_token)):
"""Submit batch prediction job (async processing)"""
user = await verify_token(credentials)
await check_rate_limit(user.id, limit=10, window=60)
job_id = create_batch_job(user.id, inputs)
background_tasks.add_task(process_batch, job_id, inputs, callback_url)
return {"job_id": job_id, "status": "processing", "status_url": f"/v2/predictions/batch/{job_id}"}
# OpenAPI schema auto-generated at /docs
API Versioning Strategies
graph LR Client[API Client] --> Gateway[API Gateway] Gateway --> V1{Version?} V1 -->|v1| Route1[Route to v1 Service] V1 -->|v2| Route2[Route to v2 Service] V1 -->|v3| Route3[Route to v3 Service] Route1 --> Service1[AI Service v1<br/>Deprecated] Route2 --> Service2[AI Service v2<br/>Current] Route3 --> Service3[AI Service v3<br/>Beta] Service1 --> Adapter[Compatibility Adapter] Adapter --> Service2 style Service1 fill:#ffcccc style Service2 fill:#ccffcc style Service3 fill:#ccccff
Versioning Approaches:
| Strategy | Example | Pros | Cons |
|---|---|---|---|
| URL Path | /v1/predict, /v2/predict | Clear, cacheable | URL proliferation |
| Header | API-Version: 2.0 | Clean URLs | Less visible |
| Query Param | /predict?version=2 | Simple | Easy to miss |
| Content Type | Accept: application/vnd.api.v2+json | RESTful | Complex |
Recommendation: Use URL path versioning for major versions, headers for minor versions.
Legacy Modernization Strategies
Strangler Fig Pattern
graph TB subgraph Phase 1 - Initial LB1[Load Balancer] --> Legacy1[Legacy System<br/>100% Traffic] end subgraph Phase 2 - Facade LB2[API Gateway/Facade] --> Legacy2[Legacy System<br/>100% Traffic] LB2 -.->|No traffic yet| Modern2[Modern Service<br/>0% Traffic] end subgraph Phase 3 - Incremental LB3[API Gateway] --> Route{Routing Logic} Route -->|80%| Legacy3[Legacy System] Route -->|20%| Modern3[Modern Service] end subgraph Phase 4 - Completion LB4[API Gateway] --> Modern4[Modern Service<br/>100% Traffic] Legacy4[Legacy System<br/>Decommissioned] end Phase 1 --> Phase 2 Phase 2 --> Phase 3 Phase 3 --> Phase 4
Implementation Example
# Strangler facade pattern for gradual migration
from fastapi import FastAPI, Request
import httpx
import random
app = FastAPI()
class StranglerFacade:
def __init__(self):
self.legacy_client = httpx.AsyncClient(base_url="http://legacy-app:8080")
self.modern_client = httpx.AsyncClient(base_url="http://modern-service:8080")
# Gradual rollout configuration
self.rollout_config = {
"/api/customers": {"modern_percentage": 0, "shadow_mode": False}, # Not ready
"/api/orders": {"modern_percentage": 20, "shadow_mode": False}, # 20% canary
"/api/recommendations": {"modern_percentage": 100, "shadow_mode": False}, # Complete
"/api/inventory": {"modern_percentage": 50, "shadow_mode": True} # 50% + shadow testing
}
async def route_request(self, path: str, request: Request):
"""Route request to legacy or modern service based on config"""
config = self.rollout_config.get(path, {"modern_percentage": 0})
use_modern = random.random() * 100 < config["modern_percentage"]
if config.get("shadow_mode"):
return await self.shadow_mode_request(path, request) # Call both, compare
elif use_modern:
return await self.call_modern_service(path, request)
else:
return await self.call_legacy_system(path, request)
async def call_legacy_system(self, path: str, request: Request):
"""Forward request to legacy system"""
try:
response = await self.legacy_client.request(
method=request.method, url=path,
headers=dict(request.headers), content=await request.body(), timeout=30.0
)
return {"source": "legacy", "status_code": response.status_code, "data": response.json()}
except httpx.TimeoutException:
return await self.call_modern_service(path, request) # Fallback on timeout
async def call_modern_service(self, path: str, request: Request):
"""Forward request to modern service"""
response = await self.modern_client.request(
method=request.method, url=path,
headers=dict(request.headers), content=await request.body(), timeout=30.0
)
return {"source": "modern", "status_code": response.status_code, "data": response.json()}
async def shadow_mode_request(self, path: str, request: Request):
"""Call both systems, log discrepancies, return legacy result"""
legacy_task = asyncio.create_task(self.call_legacy_system(path, request))
modern_task = asyncio.create_task(self.call_modern_service(path, request))
legacy_response, modern_response = await asyncio.gather(legacy_task, modern_task, return_exceptions=True)
# Compare results and log discrepancies
if not isinstance(modern_response, Exception) and legacy_response["data"] != modern_response["data"]:
await log_discrepancy(path, legacy_response["data"], modern_response["data"])
return legacy_response # Always return legacy in shadow mode
# FastAPI integration
facade = StranglerFacade()
@app.api_route("/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def proxy(path: str, request: Request):
"""Proxy all requests through strangler facade"""
result = await facade.route_request(f"/{path}", request)
return result["data"]
@app.post("/admin/rollout")
async def update_rollout(path: str, percentage: int):
"""Update rollout percentage for a path"""
if path in facade.rollout_config:
facade.rollout_config[path]["modern_percentage"] = percentage
return {"status": "updated", "path": path, "percentage": percentage}
return {"status": "error", "message": "Path not found"}
Event-Driven Integration
Event Architecture Patterns
graph TB subgraph Legacy System Legacy[Legacy Application] Legacy_DB[(Legacy Database)] end subgraph Event Infrastructure CDC[Change Data Capture<br/>Debezium] Kafka[Event Stream<br/>Kafka/EventBridge] Schema[Schema Registry] end subgraph Modern Services Transform[Event Transformer] AI_Service[AI Service] Analytics[Analytics Service] Notification[Notification Service] end subgraph Data Lake Lake[(Data Lake)] DW[(Data Warehouse)] end Legacy --> Legacy_DB Legacy_DB --> CDC CDC --> Kafka Kafka --> Schema Kafka --> Transform Transform --> AI_Service Transform --> Analytics Transform --> Notification Kafka --> Lake Lake --> DW
Event Schema Management
# Event schema with Avro
from confluent_kafka.avro import AvroProducer, AvroConsumer
import avro
# Define Avro schema for events (simplified)
order_event_schema = """
{
"namespace": "com.company.events",
"type": "record",
"name": "OrderEvent",
"fields": [
{"name": "event_id", "type": "string"},
{"name": "event_type", "type": {"type": "enum", "name": "EventType", "symbols": ["CREATED", "UPDATED", "CANCELLED"]}},
{"name": "timestamp", "type": "long", "logicalType": "timestamp-millis"},
{"name": "order_id", "type": "string"},
{"name": "customer_id", "type": "string"},
{"name": "order_data", "type": {
"type": "record",
"name": "OrderData",
"fields": [
{"name": "total_amount", "type": "double"},
{"name": "items", "type": {"type": "array", "items": "string"}}
]
}}
]
}
"""
# Event producer
class EventProducer:
def __init__(self, bootstrap_servers, schema_registry_url):
self.producer = AvroProducer({
'bootstrap.servers': bootstrap_servers,
'schema.registry.url': schema_registry_url
}, default_value_schema=avro.loads(order_event_schema))
def publish_order_event(self, event_type, order_id, customer_id, order_data):
"""Publish order event to Kafka"""
event = {
'event_id': str(uuid.uuid4()),
'event_type': event_type,
'timestamp': int(datetime.utcnow().timestamp() * 1000),
'order_id': order_id,
'customer_id': customer_id,
'order_data': order_data
}
# Publish with key for partitioning (ensures ordering per customer)
self.producer.produce(topic='orders', key=customer_id, value=event)
self.producer.flush()
return event['event_id']
# Event consumer for AI processing
class OrderEventConsumer:
def __init__(self, bootstrap_servers, schema_registry_url, group_id):
self.consumer = AvroConsumer({
'bootstrap.servers': bootstrap_servers,
'group.id': group_id,
'schema.registry.url': schema_registry_url,
'enable.auto.commit': False # Manual commit for at-least-once processing
})
self.consumer.subscribe(['orders'])
async def consume_and_process(self):
"""Consume events and trigger AI processing"""
while True:
msg = self.consumer.poll(timeout=1.0)
if msg and not msg.error():
event = msg.value()
await self.process_order_event(event)
self.consumer.commit(msg) # Commit after successful processing
async def process_order_event(self, event):
"""Process order event with AI services"""
if event['event_type'] == 'CREATED':
# Trigger fraud detection
fraud_score = await ai_service.predict_fraud(event['customer_id'], event['order_data'])
if fraud_score > 0.8:
await alert_service.send_fraud_alert(event['order_id'], fraud_score)
# Generate product recommendations
recommendations = await ai_service.get_recommendations(event['customer_id'])
await notification_service.send_recommendations(event['customer_id'], recommendations)
elif event['event_type'] == 'CANCELLED':
await ai_service.update_churn_risk(event['customer_id'], event='order_cancelled')
Idempotency in Event Processing
# Idempotent event consumer
class IdempotentEventProcessor:
def __init__(self, redis_client):
self.redis = redis_client
self.processed_ttl = 86400 # 24 hours
async def process_event(self, event):
"""Process event with idempotency guarantee"""
event_id = event['event_id']
# Check if already processed
if await self.redis.exists(f"processed:{event_id}"):
return {"status": "duplicate", "event_id": event_id}
try:
result = await self.do_processing(event) # Actual business logic
# Mark as processed with TTL
await self.redis.setex(f"processed:{event_id}", self.processed_ttl,
json.dumps({"result": result, "timestamp": datetime.utcnow().isoformat()}))
return {"status": "processed", "event_id": event_id, "result": result}
except Exception as e:
logger.error(f"Error processing event {event_id}: {e}")
raise # Don't mark as processed on error - allow retry
Data Migration Strategies
Migration Patterns
| Pattern | Downtime | Risk | Complexity | Best For |
|---|---|---|---|---|
| Big Bang | Hours-Days | Very High | Low | Small systems, off-hours migration |
| Incremental (Strangler) | None | Low | High | Large systems, gradual rollout |
| Parallel Run | None | Low | Medium | Critical systems, verification needed |
| Blue-Green | Minutes | Medium | Medium | Rollback capability required |
| Feature Flags | None | Low | Medium | Gradual feature enablement |
| Database Replication | None | Low | High | Data-heavy migrations |
Data Synchronization During Migration
# Bi-directional sync during migration
class DataSyncManager:
def __init__(self, legacy_db, modern_db):
self.legacy_db = legacy_db
self.modern_db = modern_db
async def sync_legacy_to_modern(self, table_name, record_id):
"""Sync single record from legacy to modern"""
legacy_record = await self.legacy_db.get(table_name, record_id)
modern_record = self.transform_to_modern(legacy_record)
await self.modern_db.upsert(table_name, record_id, modern_record)
await sync_log.record("legacy_to_modern", table_name, record_id)
async def sync_modern_to_legacy(self, table_name, record_id):
"""Sync single record from modern to legacy"""
modern_record = await self.modern_db.get(table_name, record_id)
legacy_record = self.transform_to_legacy(modern_record)
await self.legacy_db.update(table_name, record_id, legacy_record)
await sync_log.record("modern_to_legacy", table_name, record_id)
async def bulk_migration(self, table_name, batch_size=1000):
"""Bulk migrate table from legacy to modern"""
offset = 0
total_migrated = 0
while True:
records = await self.legacy_db.fetch_batch(table_name, offset=offset, limit=batch_size)
if not records:
break
# Transform and insert
for record in records:
modern_record = self.transform_to_modern(record)
await self.modern_db.upsert(table_name, record['id'], modern_record)
total_migrated += len(records)
offset += batch_size
logger.info(f"Migrated {total_migrated} records from {table_name}")
await asyncio.sleep(1) # Rate limit
return total_migrated
def transform_to_modern(self, legacy_record):
"""Transform legacy schema to modern schema"""
return {
'id': legacy_record['LEGACY_ID'],
'created_at': parse_legacy_date(legacy_record['CREATE_DT']),
'customer': {
'name': f"{legacy_record['FIRST_NM']} {legacy_record['LAST_NM']}",
'email': legacy_record['EMAIL_ADDR']
},
'embedding': generate_embedding(legacy_record) # AI enhancement
}
def transform_to_legacy(self, modern_record):
"""Transform modern schema to legacy schema (lossy)"""
name_parts = modern_record['customer']['name'].split(' ', 1)
return {
'LEGACY_ID': modern_record['id'],
'CREATE_DT': format_legacy_date(modern_record['created_at']),
'FIRST_NM': name_parts[0],
'LAST_NM': name_parts[1] if len(name_parts) > 1 else '',
'EMAIL_ADDR': modern_record['customer']['email']
# Note: embedding field dropped (not in legacy schema)
}
API Gateway Configuration
Kong Gateway Example
# Kong declarative configuration for AI API
_format_version: "3.0"
services:
- name: ai-prediction-service
url: http://ai-service.internal:8080
protocol: http
connect_timeout: 60000
write_timeout: 60000
read_timeout: 60000
routes:
- name: predictions-v2
paths:
- /v2/predictions
methods:
- POST
strip_path: false
plugins:
# Rate limiting
- name: rate-limiting
config:
minute: 100
hour: 1000
policy: redis
redis_host: redis.internal
redis_port: 6379
# Authentication
- name: jwt
config:
claims_to_verify:
- exp
key_claim_name: iss
secret_is_base64: false
# Request validation
- name: request-validator
config:
body_schema: |
{
"type": "object",
"required": ["input_data"],
"properties": {
"input_data": {"type": "object"},
"model_version": {"type": "string"},
"explain": {"type": "boolean"}
}
}
# Response transformer (add headers)
- name: response-transformer
config:
add:
headers:
- X-API-Version: v2
- X-RateLimit-Remaining: $(ratelimit.remaining)
# CORS
- name: cors
config:
origins:
- https://app.company.com
methods:
- GET
- POST
headers:
- Authorization
- Content-Type
exposed_headers:
- X-API-Version
credentials: true
max_age: 3600
# Logging
- name: file-log
config:
path: /var/log/kong/ai-api.log
reopen: true
# Prometheus metrics
- name: prometheus
# Legacy system proxy (for strangler pattern)
- name: legacy-service
url: http://legacy-app.internal:8080
routes:
- name: legacy-orders
paths:
- /api/orders
strip_path: false
plugins:
- name: request-transformer
config:
add:
headers:
- X-Legacy-Routing: true
# Global plugins
plugins:
- name: correlation-id
config:
header_name: X-Correlation-ID
generator: uuid
echo_downstream: true
Evaluation Metrics
API Performance
| Metric | Target | Measurement |
|---|---|---|
| Latency (p95) | <200ms | End-to-end request-response time |
| Latency (p99) | <500ms | 99th percentile latency |
| Throughput | >1000 req/s | Requests per second sustained |
| Error Rate | <0.1% | Failed requests / Total requests |
| Availability | >99.9% | Uptime measurement |
Migration Progress
| Metric | Target | Measurement |
|---|---|---|
| Traffic on Modern | 100% | % of requests routed to modern service |
| Data Sync Lag | <1 min | Time between legacy write and modern sync |
| Schema Compatibility | 100% | % of legacy data transformable to modern |
| Incident Rate | <0.5/week | Migration-related incidents |
| Rollback Time | <5 min | Time to rollback to legacy |
Case Study: Logistics Route Optimization
Background
A logistics provider has a 20-year-old mainframe system for route planning. Manual routing leads to 15% inefficiency. Modern AI optimizer can improve by 20-25% but requires careful integration.
Challenge
- Legacy system: COBOL on mainframe, batch processing overnight
- Fragile codebase: 500K lines, limited documentation
- High availability requirement: 99.95% uptime SLA
- Complex data: 50+ tables with arcane schemas
- Risk aversion: Any outage costs $100K+/hour
Implementation Strategy
Phase 1: API Facade (Months 1-3)
- Wrapped legacy system with REST API
- No changes to legacy logic
- Read-only endpoints for order, route, vehicle data
- Authentication and rate limiting via API gateway
Phase 2: Shadow Mode AI (Months 4-6)
- Deployed AI optimizer in parallel
- Compared AI routes vs. legacy routes (shadow mode)
- Measured AI improvement: 23% fewer miles, 18% faster delivery
- No changes to production routing yet
Phase 3: Hybrid Routing (Months 7-10)
- Introduced routing logic in API gateway
- 10% of routes: AI optimizer
- 90% of routes: Legacy system
- Gradual increase: 10% → 25% → 50% → 75%
- Rollback capability via config change
Phase 4: Event-Driven Updates (Months 11-14)
- Implemented CDC on legacy database
- Real-time event stream for order updates
- AI optimizer subscribed to events
- Enabled dynamic re-routing based on traffic, weather
Phase 5: Full Migration (Months 15-18)
- 100% traffic to AI optimizer
- Legacy system on standby for 6 months
- Data migration to modern PostgreSQL
- Decommissioned mainframe
Architecture
graph TB subgraph Phase 3 - Hybrid Routing API[API Gateway<br/>Kong] Router{Routing Logic<br/>10% AI, 90% Legacy} Legacy[Legacy Mainframe<br/>Route Planning] AI[AI Optimizer<br/>ML Service] DB_Legacy[(Legacy DB<br/>DB2)] DB_Modern[(Modern DB<br/>PostgreSQL)] CDC[Change Data Capture<br/>Debezium] Kafka[Event Stream<br/>Kafka] end API --> Router Router -->|90%| Legacy Router -->|10%| AI Legacy --> DB_Legacy AI --> DB_Modern DB_Legacy --> CDC CDC --> Kafka Kafka --> AI AI --> Metrics[Metrics<br/>Prometheus] Legacy --> Metrics
Results
| Metric | Before | After | Improvement |
|---|---|---|---|
| Route Efficiency | Baseline | +23% fewer miles | +23% |
| Delivery Time | Baseline | -18% faster | +18% |
| Fuel Costs | $2.1M/month | $1.65M/month | -21% |
| Customer Satisfaction | 82% | 91% | +9 pp |
| API Latency (p95) | N/A | 187ms | - |
| Migration Incidents | N/A | 2 (both rolled back in <5 min) | - |
| Downtime | 0 | 0 | No downtime |
Cost-Benefit:
- Migration cost: $1.8M
- Annual savings: 1.2M (mainframe license)
- Payback: 3.3 months
- 3-year NPV: $17.2M
Lessons Learned
- Shadow Mode is Critical: 2 months of shadow testing caught edge cases that would have caused production issues
- Gradual Rollout Works: 10% increments allowed validation at each step
- Rollback Saves Projects: Two incidents rolled back in <5 min prevented major outages
- Event Streams Enable Real-Time: CDC + Kafka unlocked dynamic re-routing capability
- API-First Pays Off: API facade enabled parallel development of modern services
Implementation Checklist
API Design
- Define API contracts with OpenAPI specs
- Establish versioning strategy
- Design request/response schemas with validation
- Plan for authentication and authorization
- Set rate limits and quotas
- Document API for developers
API Gateway Setup
- Deploy API gateway (Kong, Apigee, AWS API Gateway)
- Configure routing rules
- Implement authentication plugins
- Set up rate limiting
- Enable request/response validation
- Configure CORS policies
- Set up logging and monitoring
Legacy Integration
- Map legacy system capabilities and data
- Identify strangler pattern boundaries
- Build adapters for legacy system
- Implement data transformation logic
- Set up bi-directional sync if needed
- Create rollback procedures
Event Infrastructure
- Deploy event streaming platform (Kafka, EventBridge)
- Set up schema registry
- Implement CDC for legacy database
- Design event schemas
- Build event producers and consumers
- Ensure idempotent event processing
Migration Execution
- Start with read-only shadow mode
- Validate modern service matches legacy
- Implement gradual traffic shifting (10%, 25%, 50%, 75%, 100%)
- Monitor metrics at each stage
- Test rollback procedures
- Plan for data migration
- Schedule legacy decommissioning
Monitoring & Operations
- Set up API performance dashboards
- Create alerts for errors and latency
- Monitor migration progress metrics
- Implement distributed tracing
- Log all requests for audit
- Establish on-call procedures
Best Practices
Do's
- Design API-First: Define contracts before implementation
- Version from Day 1: Plan for backward compatibility
- Test in Shadow Mode: Validate before switching traffic
- Incremental Rollout: Gradual traffic shifting with rollback capability
- Monitor Everything: Metrics, logs, traces for both legacy and modern
- Document Thoroughly: API docs, runbooks, architecture diagrams
- Plan for Rollback: Always have a quick path back to legacy
Don'ts
- Don't Big Bang Migrate: Incremental is safer
- Don't Skip Validation: Shadow mode catches issues
- Don't Neglect Legacy: Keep legacy stable during migration
- Don't Hardcode Routing: Use configuration for flexibility
- Don't Ignore Performance: Set SLOs and monitor
- Don't Forget Data Sync: Bi-directional sync during transition
Common Pitfalls
| Pitfall | Impact | Mitigation |
|---|---|---|
| Incompatible Schemas | Data loss, errors | Schema registry, transformation testing |
| No Rollback Plan | Stuck in broken state | Always maintain legacy fallback |
| Inadequate Testing | Production failures | Shadow mode, gradual rollout |
| Data Sync Lag | Inconsistency | CDC, monitoring of sync lag |
| API Breaking Changes | Client failures | Versioning, backward compatibility |
| Performance Regression | Slower than legacy | Load testing, optimization before rollout |
Technology Recommendations
| Component | Options | Best For |
|---|---|---|
| API Gateway | Kong, Apigee, AWS API Gateway, Azure API Management | Enterprise-grade APIs |
| Event Streaming | Kafka, AWS EventBridge, Azure Event Grid | Event-driven architecture |
| CDC | Debezium, Airbyte, AWS DMS | Legacy database sync |
| Schema Registry | Confluent Schema Registry, AWS Glue | Event schema management |
| Monitoring | Datadog, New Relic, Prometheus + Grafana | Observability |
| Tracing | Jaeger, AWS X-Ray, Zipkin | Distributed tracing |
Deliverables
1. API Contracts
- OpenAPI/Swagger specifications
- Request/response schemas
- Authentication requirements
- Rate limits and quotas
- Versioning policy
2. Migration Plan
- Phased rollout schedule
- Traffic shifting strategy
- Rollback procedures
- Data migration approach
- Risk assessment and mitigation
3. Integration Architecture
- System architecture diagrams
- Event flow diagrams
- Data flow diagrams
- Strangler pattern boundaries
- API gateway configuration
4. Operational Runbooks
- Deployment procedures
- Rollback procedures
- Monitoring and alerting setup
- Incident response playbooks
- Troubleshooting guides