39. Task-Oriented Agents (Coding, Research, Ops)
Chapter 39 — Task-Oriented Agents (Coding, Research, Ops)
Overview
While general-purpose agents capture headlines, task-oriented agents deliver measurable business value quickly and reliably. By narrowing the scope to specific domains like coding, research, or operations, you can build robust tooling, define clear success metrics, and implement effective safety controls. This chapter provides practical guidance for building production-ready agents across three high-value domains.
Core Focus:
- Domain-specific tool design and safety boundaries
- Evaluation frameworks with quantifiable metrics
- Human-in-the-loop workflows for high-risk operations
- Evidence preservation and audit trails
- Real-world deployment patterns and ROI measurement
Why It Matters
General-purpose agents are exciting, but targeted task agents deliver dependable value fast. Narrow scopes enable robust tools, clear success metrics, and safe operations.
Key Advantages of Task-Oriented Agents:
- Faster Time-to-Value: Deploy in weeks instead of months
- Measurable ROI: Clear metrics tied to business outcomes
- Safer Operations: Bounded capabilities reduce risk surface
- Easier Evaluation: Domain-specific success criteria
- Better User Trust: Predictable, reliable behavior builds confidence
Business Impact:
- Coding agents: 60-70% automation of routine development tasks
- Research agents: 3-5x faster literature reviews and analysis
- Ops agents: 35-50% reduction in mean time to acknowledge incidents
- Cost savings: 200K annually per agent deployment
Domain-Specific Agent Patterns
Agent Type Comparison
| Domain | Primary Use Cases | Key Tools | Success Metrics | Risk Level |
|---|---|---|---|---|
| Coding | Code review, test generation, refactoring | File read/write, syntax check, test runner | Test pass rate, compilation success | Medium |
| Research | Literature review, fact-checking, synthesis | Search, PDF extraction, citation manager | Accuracy, coverage, citation quality | Low |
| Ops | Incident triage, runbook execution, monitoring | Log query, service restart, alert manager | MTTA, MTTR, false positive rate | High |
| Data | Analysis, visualization, quality checks | SQL, pandas, plotting | Query correctness, insight quality | Medium |
| Content | Writing, editing, translation | Grammar check, style guide, translation API | Quality score, style compliance | Low |
Domain 1: Coding Agents
Architecture
graph TD A[Code Task Request] --> B[Task Analyzer] B --> C{Task Type} C -->|Q&A| D[Code Search Agent] C -->|Test Gen| E[Test Writer Agent] C -->|Refactor| F[Refactoring Agent] D --> G[Repository Index] E --> H[Test Framework] F --> I[AST Parser] G --> J[Generate Response] H --> K[Generate Tests] I --> L[Generate Diff] J --> M[Human Review] K --> N[Dry-Run Tests] L --> O[Preview Changes] M --> P[Return Result] N --> Q{Tests Pass?} O --> R{Approve?} Q -->|Yes| S[Commit Tests] Q -->|No| E R -->|Yes| T[Apply Refactor] R -->|No| F style B fill:#e1f5ff style D fill:#fff4e1 style E fill:#fff4e1 style F fill:#fff4e1 style N fill:#ffe1e1 style O fill:#ffe1e1
Coding Agent Tool Contracts
Essential Tool Schema:
from pydantic import BaseModel, Field, validator
class FileReadRequest(BaseModel):
file_path: str = Field(..., description="Absolute path within workspace")
max_lines: int = Field(default=1000, ge=1, le=10000)
@validator('file_path')
def validate_path(cls, v):
if '..' in str(v) or not str(v).startswith('/workspace/'):
raise ValueError("Path validation failed")
return v
class FileWriteRequest(BaseModel):
file_path: str
content: str
dry_run: bool = True # Always preview first
requires_approval: bool = True
class TestGenerationRequest(BaseModel):
source_file: str
test_framework: Literal["pytest", "unittest", "jest"]
coverage_target: float = 0.8
Safety Controls:
| Control Layer | Mechanism | Example |
|---|---|---|
| Path Validation | Workspace sandboxing | Block ../etc/passwd access |
| Secret Detection | Regex patterns | Prevent committing api_key="..." |
| Approval Gates | Human review queue | File writes require confirmation |
| Dry-Run Mode | Preview before execute | Show diff before applying refactor |
| Test Validation | Automated test runs | Ensure refactors don't break tests |
Domain 2: Research Agents
Architecture
graph TD A[Research Query] --> B[Query Analyzer] B --> C[Search Planner] C --> D[Multi-Source Search] D --> E[Academic DBs] D --> F[Web Search] D --> G[Internal Docs] E --> H[Result Aggregator] F --> H G --> H H --> I[Relevance Ranker] I --> J[Content Extractor] J --> K[Claim Extraction] K --> L[Citation Manager] L --> M[Synthesis Engine] M --> N[Fact Checker] N --> O[Draft Generator] O --> P[Quality Review] P --> Q{Quality OK?} Q -->|No| M Q -->|Yes| R[Final Report] style B fill:#e1f5ff style I fill:#fff4e1 style N fill:#ffe1e1 style R fill:#e8f5e9
Research Agent Tools
from typing import List, Dict, Optional
from pydantic import BaseModel, HttpUrl, Field
from datetime import datetime
class SearchRequest(BaseModel):
"""Multi-source search request."""
query: str = Field(..., max_length=500)
sources: List[str] = Field(default=["semantic_scholar", "pubmed", "arxiv"])
date_range: Optional[tuple[datetime, datetime]] = None
max_results: int = Field(default=20, ge=1, le=100)
require_full_text: bool = False
class ClaimExtractionRequest(BaseModel):
"""Extract claims from document."""
document_text: str
extract_evidence: bool = True
confidence_threshold: float = Field(default=0.7, ge=0.0, le=1.0)
max_claims: int = Field(default=10, ge=1, le=50)
class Citation(BaseModel):
"""Structured citation."""
title: str
authors: List[str]
year: int
venue: str
url: Optional[HttpUrl]
doi: Optional[str]
citation_key: str # Auto-generated
class Claim(BaseModel):
"""Extracted claim with evidence."""
claim_text: str
evidence: List[str]
confidence: float
citations: List[Citation]
claim_type: str # finding, methodology, limitation, etc.
class ResearchSynthesisRequest(BaseModel):
"""Synthesize research findings."""
claims: List[Claim]
synthesis_type: Literal["literature_review", "meta_analysis", "summary"]
include_gaps: bool = True
include_contradictions: bool = True
max_length: int = Field(default=2000, ge=100, le=10000)
class ResearchAgentTools:
"""
Tools for research agents.
"""
def __init__(self, api_keys: Dict[str, str]):
self.api_keys = api_keys
self.citation_count = 0
def search_literature(self, request: SearchRequest) -> Dict[str, Any]:
"""Search across academic databases."""
all_results = []
for source in request.sources:
if source == "semantic_scholar":
results = self._search_semantic_scholar(request)
elif source == "pubmed":
results = self._search_pubmed(request)
elif source == "arxiv":
results = self._search_arxiv(request)
else:
continue
all_results.extend(results)
# Deduplicate by DOI/title
deduped = self._deduplicate_papers(all_results)
# Rank by relevance
ranked = self._rank_by_relevance(deduped, request.query)
return {
"query": request.query,
"total_results": len(ranked),
"papers": ranked[:request.max_results],
"sources_searched": request.sources
}
def extract_claims(self, request: ClaimExtractionRequest) -> List[Claim]:
"""Extract verifiable claims from text."""
# Use LLM to extract structured claims
prompt = f"""Extract key claims from this research text:
{request.document_text[:3000]}
For each claim:
1. State the claim clearly
2. Provide supporting evidence from text
3. Classify claim type (finding/methodology/limitation)
4. Assign confidence (0-1)
Return JSON array of claims."""
# LLM call
extracted = self._call_llm(prompt)
claims = []
for item in extracted:
if item["confidence"] >= request.confidence_threshold:
claims.append(Claim(
claim_text=item["claim"],
evidence=item["evidence"] if request.extract_evidence else [],
confidence=item["confidence"],
citations=[], # Added later
claim_type=item["type"]
))
return claims[:request.max_claims]
def manage_citations(self, papers: List[Dict]) -> List[Citation]:
"""Generate structured citations."""
citations = []
for paper in papers:
self.citation_count += 1
citation = Citation(
title=paper["title"],
authors=paper.get("authors", []),
year=paper.get("year", datetime.now().year),
venue=paper.get("venue", "Unknown"),
url=paper.get("url"),
doi=paper.get("doi"),
citation_key=f"ref{self.citation_count}"
)
citations.append(citation)
return citations
def synthesize_research(self, request: ResearchSynthesisRequest) -> Dict[str, Any]:
"""Synthesize claims into coherent narrative."""
# Group claims by type
by_type = {}
for claim in request.claims:
by_type.setdefault(claim.claim_type, []).append(claim)
# Identify contradictions
contradictions = []
if request.include_contradictions:
contradictions = self._find_contradictions(request.claims)
# Identify gaps
gaps = []
if request.include_gaps:
gaps = self._identify_research_gaps(request.claims)
# Generate synthesis
prompt = f"""Synthesize these research findings into a {request.synthesis_type}:
Findings ({len(by_type.get('finding', []))} claims):
{self._format_claims(by_type.get('finding', []))}
Methodologies ({len(by_type.get('methodology', []))} claims):
{self._format_claims(by_type.get('methodology', []))}
Limitations ({len(by_type.get('limitation', []))} claims):
{self._format_claims(by_type.get('limitation', []))}
Contradictions found: {len(contradictions)}
Research gaps identified: {len(gaps)}
Generate a {request.max_length}-word synthesis with proper citations."""
synthesis_text = self._call_llm(prompt)
return {
"synthesis": synthesis_text,
"synthesis_type": request.synthesis_type,
"claims_used": len(request.claims),
"contradictions": contradictions,
"research_gaps": gaps,
"word_count": len(synthesis_text.split())
}
def fact_check_claim(self, claim: str, sources: List[Citation]) -> Dict[str, Any]:
"""Verify claim against sources."""
# Search for supporting/contradicting evidence
evidence_for = []
evidence_against = []
for source in sources:
# Retrieve full text or abstract
content = self._fetch_paper_content(source)
# Check if claim is supported
verification = self._verify_claim_in_text(claim, content)
if verification["supports"]:
evidence_for.append({
"source": source.citation_key,
"excerpt": verification["excerpt"],
"confidence": verification["confidence"]
})
elif verification["contradicts"]:
evidence_against.append({
"source": source.citation_key,
"excerpt": verification["excerpt"],
"confidence": verification["confidence"]
})
# Calculate overall confidence
total_evidence = len(evidence_for) + len(evidence_against)
confidence = len(evidence_for) / total_evidence if total_evidence > 0 else 0
return {
"claim": claim,
"verified": confidence > 0.6,
"confidence": confidence,
"evidence_for": evidence_for,
"evidence_against": evidence_against,
"sources_checked": len(sources)
}
def _deduplicate_papers(self, papers: List[Dict]) -> List[Dict]:
"""Remove duplicate papers."""
seen_dois = set()
seen_titles = set()
unique = []
for paper in papers:
doi = paper.get("doi")
title = paper.get("title", "").lower().strip()
if doi and doi in seen_dois:
continue
if title and title in seen_titles:
continue
if doi:
seen_dois.add(doi)
if title:
seen_titles.add(title)
unique.append(paper)
return unique
def _rank_by_relevance(self, papers: List[Dict], query: str) -> List[Dict]:
"""Rank papers by relevance to query."""
# Simplified - would use embeddings in production
scored = []
for paper in papers:
score = self._compute_relevance_score(paper, query)
scored.append((score, paper))
scored.sort(reverse=True, key=lambda x: x[0])
return [paper for score, paper in scored]
def _compute_relevance_score(self, paper: Dict, query: str) -> float:
"""Compute relevance score (simplified)."""
title = paper.get("title", "").lower()
abstract = paper.get("abstract", "").lower()
query_lower = query.lower()
score = 0.0
# Title match
if query_lower in title:
score += 1.0
# Abstract match
if query_lower in abstract:
score += 0.5
# Citation count (if available)
score += min(paper.get("citation_count", 0) / 100, 0.5)
return score
def _find_contradictions(self, claims: List[Claim]) -> List[Dict]:
"""Identify contradictory claims."""
contradictions = []
for i, claim1 in enumerate(claims):
for claim2 in claims[i+1:]:
if self._claims_contradict(claim1, claim2):
contradictions.append({
"claim_1": claim1.claim_text,
"claim_2": claim2.claim_text,
"confidence": min(claim1.confidence, claim2.confidence)
})
return contradictions
def _claims_contradict(self, claim1: Claim, claim2: Claim) -> bool:
"""Check if two claims contradict."""
# Simplified - would use semantic similarity and entailment
return False
def _identify_research_gaps(self, claims: List[Claim]) -> List[str]:
"""Identify gaps in research coverage."""
# Use LLM to analyze claim coverage
prompt = f"""Analyze these research claims and identify gaps:
{self._format_claims(claims)}
What areas are under-researched or need further investigation?
Return list of 3-5 research gaps."""
gaps = self._call_llm(prompt)
return gaps
def _format_claims(self, claims: List[Claim]) -> str:
"""Format claims for prompt."""
return '\n'.join(
f"- {claim.claim_text} (confidence: {claim.confidence:.2f})"
for claim in claims
)
def _call_llm(self, prompt: str) -> Any:
"""Call LLM."""
# Mock implementation
return []
def _search_semantic_scholar(self, request: SearchRequest) -> List[Dict]:
"""Search Semantic Scholar API."""
# Implementation would use actual API
return []
def _search_pubmed(self, request: SearchRequest) -> List[Dict]:
"""Search PubMed API."""
return []
def _search_arxiv(self, request: SearchRequest) -> List[Dict]:
"""Search arXiv API."""
return []
def _fetch_paper_content(self, citation: Citation) -> str:
"""Fetch full text or abstract."""
return ""
def _verify_claim_in_text(self, claim: str, text: str) -> Dict:
"""Verify if claim is supported by text."""
return {"supports": False, "contradicts": False, "excerpt": "", "confidence": 0.0}
Domain 3: Operations Agents
Architecture
graph TD A[Alert/Incident] --> B[Triage Agent] B --> C[Severity Classifier] C --> D{Severity} D -->|P0/P1| E[Immediate Escalation] D -->|P2/P3| F[Runbook Retrieval] F --> G[Context Gatherer] G --> H[Log Analyzer] G --> I[Metric Checker] G --> J[Service Map] H --> K[Root Cause Analyzer] I --> K J --> K K --> L[Remediation Planner] L --> M{Auto-Remediate?} M -->|Safe| N[Execute Actions] M -->|Risky| O[Human Approval] N --> P[Validate Fix] O --> Q[Await Approval] Q --> N P --> R{Resolved?} R -->|Yes| S[Close Incident] R -->|No| T[Escalate] style C fill:#e1f5ff style K fill:#fff4e1 style M fill:#ffe1e1 style P fill:#ffe1e1 style S fill:#e8f5e9
Operations Agent Tools
from enum import Enum
from typing import List, Dict, Optional, Literal
from pydantic import BaseModel, Field
from datetime import datetime, timedelta
class Severity(Enum):
P0 = "critical"
P1 = "high"
P2 = "medium"
P3 = "low"
class Alert(BaseModel):
"""Incoming alert."""
alert_id: str
title: str
description: str
service: str
timestamp: datetime
raw_data: Dict[str, Any]
class IncidentContext(BaseModel):
"""Gathered context for incident."""
alert: Alert
recent_logs: List[str]
metrics: Dict[str, Any]
related_services: List[str]
recent_deployments: List[Dict]
class RemediationAction(BaseModel):
"""Proposed remediation."""
action_type: Literal["restart", "scale", "rollback", "config_change", "manual"]
target: str
parameters: Dict[str, Any]
risk_level: Literal["safe", "moderate", "high"]
requires_approval: bool
dry_run_available: bool
class OpsAgentTools:
"""
Tools for operations agents.
"""
def __init__(self, log_client, metrics_client, k8s_client):
self.logs = log_client
self.metrics = metrics_client
self.k8s = k8s_client
def classify_severity(self, alert: Alert) -> Severity:
"""Classify alert severity."""
# Use rules + LLM for classification
rules_score = self._apply_severity_rules(alert)
# LLM classification
prompt = f"""Classify this alert severity (P0=critical, P1=high, P2=medium, P3=low):
Title: {alert.title}
Description: {alert.description}
Service: {alert.service}
Consider:
- User impact
- Service criticality
- Error rate
- Duration
Return JSON: {{"severity": "P0/P1/P2/P3", "reasoning": "..."}}"""
llm_result = self._call_llm(prompt)
# Combine rules and LLM
final_severity = max(rules_score, llm_result["severity"])
return Severity[final_severity]
def gather_context(self, alert: Alert) -> IncidentContext:
"""Gather diagnostic context."""
# Fetch recent logs
logs = self.logs.query(
service=alert.service,
level="ERROR",
time_range=(alert.timestamp - timedelta(minutes=15), alert.timestamp),
limit=100
)
# Fetch metrics
metrics = self.metrics.query(
service=alert.service,
metrics=["error_rate", "latency_p99", "cpu_usage", "memory_usage"],
time_range=(alert.timestamp - timedelta(hours=1), alert.timestamp)
)
# Get related services
related = self._get_related_services(alert.service)
# Check recent deployments
deployments = self._get_recent_deployments(alert.service, hours=24)
return IncidentContext(
alert=alert,
recent_logs=logs,
metrics=metrics,
related_services=related,
recent_deployments=deployments
)
def analyze_root_cause(self, context: IncidentContext) -> Dict[str, Any]:
"""Analyze root cause using logs and metrics."""
prompt = f"""Analyze this incident and identify root cause:
Alert: {context.alert.title}
Service: {context.alert.service}
Recent Errors:
{chr(10).join(context.recent_logs[:20])}
Metrics:
- Error Rate: {context.metrics.get('error_rate')}
- P99 Latency: {context.metrics.get('latency_p99')}
- CPU: {context.metrics.get('cpu_usage')}
- Memory: {context.metrics.get('memory_usage')}
Recent Deployments:
{chr(10).join(str(d) for d in context.recent_deployments)}
Provide:
1. Most likely root cause
2. Contributing factors
3. Confidence level (0-1)
4. Supporting evidence
Return JSON."""
analysis = self._call_llm(prompt)
return {
"root_cause": analysis.get("root_cause"),
"factors": analysis.get("factors", []),
"confidence": analysis.get("confidence", 0.5),
"evidence": analysis.get("evidence", [])
}
def propose_remediation(
self,
context: IncidentContext,
root_cause: Dict[str, Any]
) -> List[RemediationAction]:
"""Propose remediation actions."""
actions = []
# Check runbooks
runbook = self._fetch_runbook(context.alert.service, root_cause["root_cause"])
if runbook:
# Extract actions from runbook
actions.extend(self._parse_runbook_actions(runbook))
# LLM-generated actions
prompt = f"""Propose remediation for this incident:
Root Cause: {root_cause['root_cause']}
Service: {context.alert.service}
Confidence: {root_cause['confidence']}
Available actions:
- restart_service
- scale_up
- scale_down
- rollback_deployment
- update_config
- drain_traffic
For each action, specify:
1. Action type
2. Parameters
3. Risk level (safe/moderate/high)
4. Whether approval needed
Return JSON array of actions."""
llm_actions = self._call_llm(prompt)
for action_data in llm_actions:
actions.append(RemediationAction(
action_type=action_data["type"],
target=context.alert.service,
parameters=action_data["parameters"],
risk_level=action_data["risk_level"],
requires_approval=action_data["risk_level"] in ["moderate", "high"],
dry_run_available=action_data["type"] in ["restart", "scale", "config_change"]
))
return actions
def execute_action(
self,
action: RemediationAction,
dry_run: bool = True
) -> Dict[str, Any]:
"""Execute remediation action."""
if action.requires_approval and not dry_run:
return {
"status": "pending_approval",
"action": action.action_type,
"message": "Human approval required"
}
if dry_run and action.dry_run_available:
# Simulate action
return self._dry_run_action(action)
# Execute actual action
try:
if action.action_type == "restart":
result = self.k8s.restart_service(
action.target,
**action.parameters
)
elif action.action_type == "scale":
result = self.k8s.scale_service(
action.target,
replicas=action.parameters["replicas"]
)
elif action.action_type == "rollback":
result = self.k8s.rollback_deployment(
action.target,
revision=action.parameters.get("revision")
)
else:
return {"error": f"Unknown action type: {action.action_type}"}
return {
"status": "executed",
"action": action.action_type,
"result": result
}
except Exception as e:
return {
"status": "failed",
"action": action.action_type,
"error": str(e)
}
def validate_remediation(
self,
action: RemediationAction,
wait_time: int = 60
) -> Dict[str, Any]:
"""Validate that remediation resolved the issue."""
import time
# Wait for changes to take effect
time.sleep(wait_time)
# Check metrics
current_metrics = self.metrics.query(
service=action.target,
metrics=["error_rate", "latency_p99"],
time_range=(datetime.now() - timedelta(minutes=5), datetime.now())
)
# Check for new alerts
new_alerts = self._check_for_alerts(action.target, minutes=5)
error_rate = current_metrics.get("error_rate", 0)
latency = current_metrics.get("latency_p99", 0)
resolved = (
error_rate < 0.01 and # Less than 1% errors
latency < 1000 and # Less than 1s P99
len(new_alerts) == 0 # No new alerts
)
return {
"resolved": resolved,
"error_rate": error_rate,
"latency_p99": latency,
"new_alerts": len(new_alerts),
"validation_time": wait_time
}
def _apply_severity_rules(self, alert: Alert) -> str:
"""Apply rule-based severity classification."""
# Simplified rules
if "outage" in alert.title.lower() or "down" in alert.title.lower():
return "P0"
if alert.service in ["payment", "auth", "api-gateway"]:
return "P1"
return "P2"
def _get_related_services(self, service: str) -> List[str]:
"""Get services that depend on or are depended by this service."""
# Would query service mesh or dependency graph
return []
def _get_recent_deployments(self, service: str, hours: int) -> List[Dict]:
"""Get recent deployments for service."""
# Would query deployment history
return []
def _fetch_runbook(self, service: str, issue: str) -> Optional[Dict]:
"""Fetch runbook for service/issue."""
# Would query runbook database
return None
def _parse_runbook_actions(self, runbook: Dict) -> List[RemediationAction]:
"""Extract actions from runbook."""
return []
def _dry_run_action(self, action: RemediationAction) -> Dict[str, Any]:
"""Simulate action execution."""
return {
"status": "dry_run",
"action": action.action_type,
"estimated_impact": "Service will restart, ~30s downtime",
"rollback_plan": "Previous deployment available"
}
def _check_for_alerts(self, service: str, minutes: int) -> List[Alert]:
"""Check for recent alerts."""
return []
def _call_llm(self, prompt: str) -> Any:
"""Call LLM."""
return {}
Reliability & Cost Controls
Budget Management
class AgentBudgetManager:
"""
Manage costs and enforce budgets for agent operations.
"""
def __init__(self, daily_budget: float, cost_per_1k_tokens: float):
self.daily_budget = daily_budget
self.cost_per_1k_tokens = cost_per_1k_tokens
self.daily_spend = 0.0
self.task_costs = []
def check_budget(self, estimated_tokens: int) -> tuple[bool, str]:
"""Check if task fits within budget."""
estimated_cost = (estimated_tokens / 1000) * self.cost_per_1k_tokens
if self.daily_spend + estimated_cost > self.daily_budget:
remaining = self.daily_budget - self.daily_spend
return False, f"Insufficient budget. Remaining: ${remaining:.2f}"
return True, ""
def record_usage(self, tokens_used: int, task_id: str):
"""Record token usage."""
cost = (tokens_used / 1000) * self.cost_per_1k_tokens
self.daily_spend += cost
self.task_costs.append({
"task_id": task_id,
"tokens": tokens_used,
"cost": cost,
"timestamp": datetime.now()
})
def get_metrics(self) -> Dict[str, Any]:
"""Get budget metrics."""
return {
"daily_spend": self.daily_spend,
"daily_budget": self.daily_budget,
"utilization": self.daily_spend / self.daily_budget,
"tasks_completed": len(self.task_costs),
"avg_cost_per_task": (
self.daily_spend / len(self.task_costs)
if self.task_costs else 0
)
}
Case Study: Operations Agent
Problem Statement
A SaaS company received 200-300 alerts daily across their microservices architecture. The oncall engineers spent 60-70% of their time on alert triage and routine remediation, leading to:
- High oncall burnout
- Slow response to critical issues (MTTA: 45 minutes)
- Missed patterns in recurring incidents
- Inconsistent remediation quality
Solution Implementation
They deployed an operations agent with:
- Auto-triage: Classify alerts by severity and route appropriately
- Context gathering: Automatically fetch logs, metrics, and deployment history
- Root cause analysis: Use LLM to analyze patterns
- Safe remediation: Execute low-risk actions automatically, escalate risky ones
- Validation: Verify fixes before closing incidents
Results
Before Agent:
- MTTA (Mean Time to Acknowledge): 45 minutes
- MTTR (Mean Time to Resolve): 3.5 hours
- Alerts triaged daily: 100% manual (200-300 alerts)
- Oncall engineer workload: 6-8 hours/day
After Agent (3 months):
- MTTA: 29 minutes (35% reduction)
- MTTR: 2.1 hours (40% reduction)
- Auto-triaged: 75% of alerts (150-225 alerts)
- Auto-resolved: 40% of P3 incidents
- Oncall workload: 3-4 hours/day (50% reduction)
- False positive suppression: 85% of noisy alerts
- Cost: $800/month (LLM API costs)
- ROI: $15K/month (reduced oncall hours)
Key Learnings:
- Start with read-only analysis before auto-remediation
- Implement comprehensive dry-run testing
- Build trust gradually with low-risk actions
- Maintain detailed audit logs for retrospectives
- Use feedback loops to improve classification accuracy
Implementation Checklist
Phase 1: Domain Selection & Scoping (Week 1)
- Choose target domain (coding/research/ops)
- Identify 3-5 high-value, repetitive tasks
- Define success metrics and ROI targets
- Assess risk levels for each task
- Document current manual process
Phase 2: Tool Development (Weeks 2-3)
- Design tool contracts with JSON schemas
- Implement read-only tools first
- Add dry-run capabilities for write operations
- Build tool validation and testing
- Create tool documentation
Phase 3: Safety & Approval Workflows (Week 4)
- Define risk levels for each tool
- Implement approval workflows for high-risk actions
- Add output validation and filtering
- Build comprehensive audit logging
- Set up alerts for anomalous behavior
Phase 4: Evaluation Framework (Week 5)
- Create task suite with 20-50 test cases
- Define gold standards or validation functions
- Implement automated evaluation pipeline
- Build offline replay capability
- Set up dashboards for metrics tracking
Phase 5: Agent Implementation (Week 6)
- Choose agent pattern (ReAct, Plan-Execute, etc.)
- Implement core agent logic
- Add retry and error handling
- Integrate budget management
- Build monitoring and alerting
Phase 6: Testing & Validation (Week 7)
- Run offline evaluation suite
- Conduct manual testing on diverse scenarios
- Validate safety controls
- Test approval workflows
- Measure cost per task
Phase 7: Pilot Deployment (Week 8)
- Deploy to staging environment
- Run shadow mode (observe without acting)
- A/B test on small percentage of tasks
- Collect user feedback
- Iterate based on failures
Phase 8: Production Rollout (Week 9)
- Gradual rollout (10% → 50% → 100%)
- Monitor success rate, cost, latency
- Maintain human-in-the-loop review queue
- Document known limitations
- Train users and stakeholders
Best Practices
Tool Design
- Start Read-Only: Begin with information retrieval before enabling writes
- Explicit Schemas: Use Pydantic or JSON Schema for all parameters
- Idempotency: Design tools to be safely retryable
- Error Taxonomy: Structured errors enable better retry logic
- Versioning: Version tool interfaces for backward compatibility
Evaluation
- Domain-Specific Metrics: Code quality, research accuracy, ops MTTA/MTTR
- Task Suites: Maintain diverse, representative test cases
- Regression Testing: Replay historical traces on new versions
- Human Validation: Sample-based review for quality assurance
- Cost Tracking: Monitor per-task costs and optimize
Safety
- Defense in Depth: Multiple layers of validation
- Approval Gates: Human-in-the-loop for irreversible actions
- Dry-Run First: Preview changes before executing
- Audit Everything: Comprehensive logging for debugging
- Graceful Degradation: Fallback to manual process on failures
Cost Optimization
- Caching: Store and reuse expensive API results
- Lightweight Models: Use smaller models for planning/routing
- Early Stopping: Halt on low-confidence signals
- Batching: Process multiple items together
- Budget Caps: Hard limits on daily/per-task spending
Common Pitfalls
| Pitfall | Impact | Solution |
|---|---|---|
| Overly broad scope | Low success rate, high complexity | Start narrow, expand gradually |
| Weak tool contracts | Brittle execution, hard to debug | Strict JSON schemas, validation |
| No dry-run | Dangerous production changes | Implement preview for all writes |
| Poor error handling | Agent crashes, wastes budget | Structured errors, retry logic |
| Inadequate evaluation | Unknown failure modes | Comprehensive task suites |
| Missing audit logs | Can't debug or explain | Log all inputs, outputs, decisions |
| No approval workflow | Risky autonomous actions | Human gates for high-risk tools |
| Cost overruns | Exceeds budget | Budget caps, early stopping |
Further Reading
- Frameworks: LangChain Agents, AutoGPT, GPT-Engineer
- Coding Agents: GitHub Copilot, Amazon CodeWhisperer, Cursor
- Research Tools: Semantic Scholar API, Elicit, Consensus
- Ops Automation: PagerDuty Runbooks, Blameless, Shoreline.io